

- "It's tough to make predictions, especially about the future"
- Yogi Berra
 - Legendary Yankees catcher

Not just Dollars

- How likely is something to happen?
 - Law change
 - Financial crisis
 - Sentiment change
 - plastic bags
 - Facebook

Measure = Estimate

Expert Judgment

Research

284 Experts

80,000 predictions

Some in their own area of expertise,

Some outside (as lay people)

20 Years (to see results)

Professor Philip E. Tetlock, Wharton School, University of Pennsylvania

Expert Judgment

Research

284 Experts

80,000 predictions

Some in their own area of expertise,

Some outside (as lay people)

20 Years (to see results)

Professor Philip E. Tetlock, Wharton School, University of Pennsylvania

Results

"experts thought they knew more than they knew"

"somewhat better than ... Berkeley undergraduates"

"a little better than ... random guessing"

"a little bit worse than ... extrapolation"

Performed worse in their own expert area than their non-expert colleagues

In Place of Experts Probabilistic Elicitation

- Crowd Wisdom
 - Many Independant Views
- Aggregating Estimates
 - Statistically

How Much Does This Cow Weigh?

(All People)

Source: The Internet. Credit: Quoctrung Bui/NPR

Why is a Crowd better?

- Everyone has prior beliefs
 - Some are Facts
 - Some are Myths
 - As individuals, Facts and Myths are hard to tell apart
- Facts are believed by more people,
 - So statistically, belief in Facts tends to reinforce
- Each Myth is believed by fewer people
 - Opposing Myths cancel each other out

Independant Views

- Value Diversity
- Avoid group effects
 - Group sense-making to define terms etc
 - Provide historical data as context
 - But gather estimates in private
- Control for Biases
 - Neutral proxies for contentious items

Combining Estimates

Number Of Guesses

Weight (in lbs)

Source: The Internet.

Credit: Quoctrung Bui/NPR

Beta Distribution $\beta = 8$

Source: The Internet.

Credit: Quoctrung Bui/NPR

PMI 3-point Cost Estimate

In a single cell...

Ree	Fil	e H	Home	Inse	ert i	Page La	yout	Form	nulas	Data F	Review	View	Add-Ins	Bum
all		AZ1	.0	,	- (f _x =E	BETA.II	NV(A5,	AI10, AJ10), 0, 1)			
		AG	AH	AI	AJ	AK	AL	AM	AZ	BA	BB		BC	
	6	Chan	ce			Imp	act		Mont					
	7	PERT		Beta	Dist'n	(\$/M	ultipli	er)	Input	Input	Output			
	8	Mean L	Varia	en 19	8	Minim	they.	AN A	Change	inpact	Change Lange			
	10	30%	0%	63	146	0.01	0.05	() 0.10			0.01	Curren	t Risk	
	12	40%	0%	96	143	0.01	0.05	0.10	3		0.02	Risk 1 action	year later i taken	t no
	14	99%	0%	9	0	0.18	0.25	0.35			0.24	Propos mitigat	ed action t e risk	:0
	16	5%	0%	2	44	0.01	0.05	0.10			0.00	Risk af	ter mitigati	on
	17										-0.23	Net va	lue of mitig	ation
	18					Risk	Trend			Increase	35%	year or	n year	
	20					2-ye	ar risl	k			0.03			
	22					Valu	e vs 2	-year	risk		-0.21			
	24					3-ye	ar risl	k			0.05			
	26					Valu	e vs 3	-year	risk		-0.19			
	20					1								

Estimate Probability

- We Estimate Probability every day
 - But we don't usually specify it
- We just need some tricks
 - To make it accessible

I'll Put Money On It

Equivalent Bet

- Would you prefer
 - To win or lose \$100 if
 the answer is within your
 90% Confidence Interval range

• OR

To spin the wheel
 with a bet on
 1-12 AND column 1

Visualise...

A Format-based Approach

- 50% as likely:
 - Red or Odd numbers
- 33% as likely:
 - 1-12, or in any column
- 17% as likely
 - Red AND in a column
- 11% as likely
 1-12 AND in a column
 - ~the 90% Confidence Interval
- 5% as likely
 - 1-12 AND in a column AND Red

		0		00	
_		1	2	З	
EVE	1 T	4	5	6	
N	o 12	7	8	9	1 то 18
		10	n	12	
REI		13	14	15	
Ĭ	13 т	16	17	18	
ω	0 24	19	20	21	
LAC		22	23	24	
Ж		25	26	27	19 T
	25 T	28	29	30	10 36
ODI	0 36	31	32	33	
Ŭ		34	35	36	
		2 то 1	2 то 1	2 то 1	

Represent your Forecast

How Good is an Estimator?

- Brier Score originated with Weather
 Forecasters- looking back at their history
- Where we have no history to go on, we can use proxy questions
- So how good are you?

Brier Score

- Across many past estimates, looks at
 - Whether you were right, and
 - How confident you were that you were right
- 0 is a perfect score
 - Always right, always confident
- 1.0 is the worst
 - 100% confident but 100% wrong
- Impossible to "cheat"

Estimating Benefits

Failure is often just

Failure of Estimation

Image courtesy of Freepik.com

