
Andy Dingfelder

DevOpsPM

A Crash Course in DevOps and Continuous Delivery for Project Managers

DevOps Overview

DevOps Culture

Key Processes

Practices

Tools

PM

DevOps Crash Course

What is DevOps?

Overview

The simple definition many use is a combination of DEVelopment & OPerationS

DevOps = Dev + Ops

A more complete picture A set of practices that emphasizes the collaboration and
communication of both software developers and other information-technology (IT)
professionals while automating the process of software delivery and infrastructure
changes.

AutomationDevOps = DEV OPS

A more complete answer is:

[Collaboration]

What is DevOps?

Overview

Wikipedia
defines
DevOps as:

This definition is more complete as it adds business value and frequency

A set of software
development

practices

That combines
software

development (Dev)
and IT operations

(Ops)

To shorten the
systems

development
life cycle

While delivering
features, fixes, and
updates frequently

In close
alignment with

business
objectives

Culture, Technical Practices and Architecture

Overview

Another viewpoint is presented by Gene Kim, author of The Phoenix Project,

a must read for anyone interested in learning about DevOps.

He defines DevOps as:
“The set of cultural norms, technical practices and architecture
that enables organizations to have both a fast flow of work from
development to deployment, as well as world-class reliability,
availability and security [of information systems and IT services].”

< FAST >
Architecture Practices

Culture

Why Do We Need DevOps?

Overview

Common business complaints are:

DevOps seeks to solve these and other business problems

It takes too long to
deliver value to
customers (we

need to improve
speed

to market)

Deploying to
production is

hard

Mistakes are
expensive to fix

(and take too long)

Development, QA and
Operations each have

different priorities

Conflicting Priorities

Overview

Development, QA and Operations have very different (conflicting) priorities

Development

OperationsQA

Developers focus on delivering business value, and
providing a powerful customer experience.

They are concerned with product quality while
sustaining or increasing speed of production delivery

Testers want to
identify defects as
early as possible
in the lifecycle
(shifting left) to

minimize
customer impact

in production

Ops want to minimize
production changes

to decrease risk.
They are rewarded
for system stability

(keep the ship
floating and limit

chaos in production)

High Performing Organisations

Overview

The following performance metrics can tell us a lot about successful organisations

Measure of
software
delivery

performance
tempo

Measures
of

reliability

Deployment Frequency:

how often do we deploy?

Lead Time:

how long does it take from code committed to code
successfully running in production?

Mean Time to Restore (MTTR):

how quickly can a service be restored?

Change Fail Rate:

what percentage of changes to production fail?

From the 2019 DORA State of DevOps report

High Performing Organisations

Overview

These performance metrics can tell us a lot about successful organisations

Aspect of

Software Delivery Performance
Elite High Medium Low

Deployment frequency

How often does your organization

deploy code?

On-demand deploys

(multiple per day)

Between

once per hour

and once per day

Between

once per week

and once per month

Between

once per week

and once per

month

Lead time for changes

What is your lead time for changes

(i.e., how long does it take to go

from code commit to production)?

Less than

one hour

Between

one day

and one week

Between

one week

and one month

Between

one month

and six months

Time to restore service

How long does it generally take to

restore service when a service

incident occurs?

Less than

one hour

Less than

one day

Less than

one day

Between

one week

and one month

Change failure rate

What percentage of changes result

either in degraded service or

subsequently requires

remediation?

0-15% 0-15% 0-15% 46-60%

From the 2019 DORA State of DevOps report

What are high performing organisations doing?

Overview

Note what low
performing

organisations
are doing

(or not doing)

Puppet 2019 State of DevOps report

Automation brings
increased repeatability

and less focus on
repetitive tasks

Collaborative
working between

teams

Benefits of DevOps

Overview

High performing DevOps organisations have common trends:

Processes are
documented and low

value tasks are
eliminated

Increased team
flexibility, agility

and happier
employees

Shorter time to
market & better mean

time to recovery
when issues are

found

Benefits of DevOps - 2

Overview

Additional benefits of DevOps include:

More secure, reliable,
and better tested

applications

Improved
operational support

and faster fixes

Higher
business value and
happier customers

A Cultural Shift Relentless Pursuit of Quality at All Stages

Overview

• Continuous Integration

• Continuous Testing

• Continuous Delivery

• Continuous Monitoring

• Continuous Feedback

• Continuous Improvement

Development

OperationsQA

DevOps is more though than just collaboration between

Development, QA and Operations

It is a cultural shift for all 3 groups to integrate quality

across the entire SDLC, using:

Relentless Pursuit of Quality

DevOps Overview

DevOps Culture

Key Principles

Practices

Tools

PM

Team Responsibility

and Quality Focus

• Product Quality &

Customer Focus -

everyone on the team

is responsible

• Highly Collaborative

Culture

• Automate Everything

• Relentless Continuous

Improvement

• Blameless Culture

Martin Fowler

Team Responsibility

Culture

Everyone in the team has shared responsibility

Developers are
responsible for

their application
support in

production.

Everyone is equally
responsible for the
E2E health of the

entire value stream.
You built it you

support it

Customer /
Quality Focus

Everyone is
responsible for
quality, not just

the tester

Highly Collaborative Culture
Teams are Cross-Functional

Everyone works
collectively

to build, ship
and support
the product

Good Quality
Engineering

practices and cross-
functional disciplines
are required in each

delivery team

Continuous Improvement

Culture

DevOps teams continuously strive to improve through:

Experimentation
Don’t fear failure, we

learn from making
mistakes

Game Days and
Chaos Hackathons to
proactively simulate

production and
customer disruption

Driving down
technical debt

Provide
fast feedback on
feature quality

through automation

Blameless Culture

Culture

In a blameless culture, everyone feels safe and

no one is afraid to make mistakes.

Developers feel confident enough to express their ideas, take

chances, and feel able to speak up about problems and risks.

Dev and Ops collaborate well, and everyone is aligned on the problem.

We won’t learn and improve if we fear making mistakes.

You’ve heard the saying: Failure is not an option.

In a blameless environment, failure is always an
option, because it means that systems are always
improving and innovation is always happening.

Anti – Fragility

Culture

To build resilience we need to apply stress to the areas we need to improve on.

The more frequently we apply pressure in these areas the more we improve.

An extreme example of this is Netflix injecting faults into

production – Chaos Monkey / Simian Army

Reducing
deployment lead

times - go faster to
production

Test early, test often,
use automation to
execute the right

tests faster
Perform Game-Days to

rehearse full-scale
outages

Increase test coverage
and decrease execution
times Test more, faster!

DevOps Overview

DevOps Culture

Key Principles

Practices

Tools

Key DevOps
Principles

Lean

Third Way:
Continual Learning

and
Experimentation

First Way:
Principle of Flow

Second Way:
Principle

of Feedback

Deliver
Maximum Customer

Value
with Minimum

Resource Waste

Theory of
Constraints

The

Three

Ways

Lean

Key

Principles

Deliver

maximum customer

value

What do customers want?

What are the steps
from idea generation

to production?

Identify bottlenecks
and eliminate
wasteful tasks

1

Identify
Value

2

Map the
Value

Stream

3

Create
Flow

4

Employ
a Pull

Approach

5

Seek
Perfection

Don’t Stockpile -
Use a “Just In Time”

Approach

Continuous
Improvement

with

minimum resource

waste

Theory of Constraints

Key

Principles

The Theory of Constraints (ToC) was introduced by Eliyahu Goldratt

as an approach to identify and eliminate bottlenecks within technology value streams.

Reduce
batch sizes

keep project
work small

Decrease
WIP

restrict the #
of projects or tasks

in progress

Limit the # of
handoffs

shorten
of steps
to deploy Shorten & amplify

feedback loops

improve the
flow of work down
the value stream

The 3 Ways

Key

Principles

The 3 ways were described in the book The Phoenix Project by Gene Kim.

Highly recommended for anyone wanting to know more about DevOps

The 3rd WayThe 1st Way The 2nd Way

Systems Thinking
&

Principle of Flow

Amplify
Feedback Loops

&
Feedback

Continual
Learning

&
Experimentation

(Feedback)
Dev OpsDev Ops

(Flow) (Improve)
Dev Ops

The First Way

Key

Principles

The First Way according to Gene Kim emphasizes the performance of the entire system,

as opposed to the performance of a specific silo of work or department

Dev Ops
(Flow)

The focus is on value streams enabled by IT, beginning with requirements, built in
Development, and then transitioned into IT Operations, where the value is then
delivered to the customer as a form of a service – using Agile and newer ways of
working, including SAFe

Idea

Dev (& Test)

Ops

Prod
(Customer)

The First Way

Key

Principles

Dev Ops
(Flow)

Never pass a known
defect to downstream

work centers

Never allow local
optimization to

create global
degradation

Always seek
to increase

flow

Always seek
to achieve a

profound
understanding of

the system

The First Way – Key Principles

Key

Principles

Make Work Visible

Limit Work In Progress

Reduce Batch Sizes

Reduce Handoffs

Identify and Elevate Constraints

Eliminate Waste

Eliminating Waste – one of the Frist Way principles

Key

Principles

Waste comes in many forms Partially Done
Work

Extra Processes

Extra Features

Task SwitchingWaiting

(Unnecessary)
Motion and

Handoffs

Defects

The Second Way

Key

Principles

The Second Way is about creating Right to Left feedback loops.

The goal of many process improvement initiatives is to shorten and amplify

feedback loops, so necessary corrections can be continually made. (Feedback)
Dev Ops

Understanding and
responding to all

customers, internal
and external

Embedding
knowledge
where we
need it.

Shortening and
amplifying all

feedback loops

The Second Way – Key Principles

Key

Principles

Establish an upstream feedback loop

Shorten the feedback loop

Amplify the feedback loop (Self Reinforcing Loops)

DevOps requires constant feedback,
with a goal of finding issues quickly

so that corrections can continually be made.

Key

Principles

Experimentation and taking risks allow us to

keep pushing to improve.

We need to learn from our mistakes and keep striving to improve

The Third Way

(Improve)
Dev Ops

Shorten & amplify
feedback loops,

so necessary
corrections can be
continually made. Allocate time for the

improvement of daily
work

Create rituals that
reward the team for

taking risks

The Third Way – Key Principles

Key

Principles

Promote experimentation

Learn from success and failure

Constant improvement

Seek to achieve mastery through practice

Examples include Netflix intentionally introducing faults
100s of times a day into the system to increase resilience.

Don’t work in a silo –

Include Organizational
Learning

Working
software over

comprehensive
documentation

Customer
collaboration
over contract
negotiation

Responding to
change over

following a plan

Individuals and
interactions

over processes
and tools

• Simplicity--the art of maximizing the
amount of work not done--is essential.

• Agile processes promote sustainable
development. The sponsors, developers,
and users should be able to maintain a
constant pace indefinitely.

• Working software is the primary measure
of progress.

• Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

• Deliver working software frequently, from a
couple of weeks to a couple of months,
with a preference to the shorter timescale.

• Welcome changing requirements, even late
in development. Agile processes harness
change for the customer's competitive
advantage.

• Build projects around motivated
individuals. Give them the environment
and support they need and trust them to
get the job done.

• Continuous attention to technical
excellence and good design enhances
agility.

• The best architectures, requirements, and
designs emerge from self-organizing
teams.

• Business people and developers must
work together daily throughout the
project.

• The most efficient and effective method of
conveying information to and within a
development team is face-to-face
conversation.

• At regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behavior accordingly.

Agile Manifesto

12 Agile Principles

Team

Collaboration

and Culture

Continuous

Improvement

Deliver Fast

and Often

Deliver

Value

• Build projects around motivated individuals.
Give them the environment and support they
need and trust them to get the job done.

• The most efficient and effective method of
conveying information to and within a
development team is face-to-face
conversation.

• The best architectures, requirements, and
designs emerge from self-organizing teams.

• At regular intervals, the team reflects on how
to become more effective, then tunes and
adjusts its behavior accordingly.

• Continuous attention to technical excellence
and good design enhances agility.

• Simplicity – the art of maximizing the amount
of work not done – Is essential.

• Deliver working software frequently, from a
couple of weeks to a couple of months, with
a preference to the shorter timescale.

• Agile processes promote sustainable
development. The sponsors, developers,
and users should be able to maintain a
constant pace indefinitely.

• Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

• Working software is the primary measure of
progress.

• Welcome changing requirements, even late
in development. Agile processes harness
change for the customer's competitive
advantage.

• Business people and developers must work
together daily throughout the project.

How do DevOps
Principles relate to the

12 Agile Principles?

Automation

Relentless
Improvement

Continuous
Feedback

Lean

Blameless
Culture

Flow

DevOps Overview

DevOps Culture

Key Processes

Practices

Tools

PM

DevOps
Practices

MicroservicesContainerisation

Service
Virtualisation

Security

DR

IaC

Cloud
Services

Continuous
Delivery

Continuous
Integra�on

Monitoring

Pipeline
Orchestration

Configuration
Management

Continuous
Tes�ng

Continuous
Deployment

DevOps
Practice

Areas

Continuous Integration

DevOps
Practices

Commit
Code

Change

Version
Control

(Git Repo)

Runs
Automated

Tests

Tests fail

If tests pass then we
can proceed to the
next phase

When code is checked in, the CI
system runs automated tests

If tests fail, the CI system sends
alerts that the build has failed

CI Tool
(Jenkins)

TDD
/ Unit
Tests

Developers work on
required features

Continuous Integration, Deployment & Delivery

DevOps
Practices

Dev Unit
Test

Continuous Integration

Dev Unit
Test

System
Test

Acceptance
Test

Production

Continuous Delivery

Auto Auto Manual

Automatically deploys to test environment and runs tests

Manual Production
Deploy

Dev Unit
Test

System
Test

Acceptance
Test

Production

Continuous Deployment

Auto Auto

Continuous Deployment = Continuous Delivery + Automated Deployment to Production

Auto

Continuous Testing

DevOps
Practices

The process of executing automated tests as part of the software
delivery pipeline, in order to Identify and assess business risks
associated with a software release candidate as rapidly as possible.

If there are business risks with our
release, we want to find them quick

We want to ensure quality across all phases of the SDLC

Non-Functional
• Performance
• DevSecOps (Security, Penetration,

Compliance, etc)
• Compatibility, Usability, Accessibility,

etc

• Static Testing
• Requirements Review
• Acceptance Criteria
• Security

• Continuous Monitoring
• Continuous Feedback
• Continuous Improvement

• Production Verification
• Application Performance Management

Functional
• Unit
• System
• System Integration
• Acceptance
• TDD, BDD, SBE

• Infrastructure as Code
• Continuous Integration & Delivery
• Service Virtualisation
• Automate Everything
• Environment Management

Continuous Testing – Complete Quality Coverage

DevOps Overview

DevOps Culture

Key Processes

Practices

Tools

PM

DevOps
Tools

Configuration

Management

Continuous

Development

Continuous

Build &

Integration

Continuous
Operations &
Monitoring

Continuous

Testing

Continuous

Deployment

Communications &
Collaboration

Each DevOps
practice area
has its own
toolset

Teams need to
have the
flexibility to
choose the
right tool for
each task

Tool
Examples

DevOps

Tools

DevOps Overview

DevOps Culture

Key Processes

Practices

Tools

PM

Where does Project Management fit in?

Lean PMs ensure that activities
within the organization flow

properly, without
interruption, delays

or bottlenecks.

Find out what your
product will do &
how much customers
will pay for it.
Value streams are then mapped,
following every step from idea
generation to production.

PMs help the team to
ensure that
tasks flow
and processes
run smoothly.

Lean management
demands a dedication

to Continuous Monitoring,
Continuous Feedback &

Continuous Improvement.
Help the team seek perfection

Remove

Waste

Seek

Perfection

Identify

Value

Optimise

Flow

DevOps Tips

Start with small projects and set your team up to succeed

Focus on the Minimum Viable Product (MVP)

Collaboration, communication, the removal of silos

Enable productivity by reducing overhead

Allow your teams to pick the right tools for the job

Look at Kanban vs Scrum for CI/CD/DevOps
PM for

DevOps

DevOps Tips

Monitoring & Feedback are critical

Emphasise creating real-time project visibility

Focus on flow and integration

Eliminate waste wherever possible & reduce handoffs

Help your team to manage change collaboratively

Budgeting challenge of ongoing Programme vs Project
PM for

DevOps

Next
Steps

Wrapping

it up

The Phoenix Project is a must read for anyone seeking to

understand DevOps. The DevOps Handbook and Accelerate are

great follow ups for anyone working in a DevOps team

The Phoenix Project
By Gene Kim,

George Spafford
and

Kevin Behr

The DevOps Handbook
By Gene Kim
Jez Humble
John Willis,

and
Patrick Debois

Accelerate
By Gene Kim,
Jez Humble

and
Nicole Forsgren

