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ABSTRACT 
 
 Recent earthquakes showed that pipeline damage is relatively heavy especially in the areas where 

permanent ground deformations (e.g., liquefaction zones) existed. In this study, the fragility 
relations relating the probability of buried pipeline damage within the pipeline system to the 
seismic intensity levels and associated lateral and vertical ground deformations were presented. 
Data from 6.2 Mw 22 February 2011 Christchurch earthquake were used. The data collected are 
unprecedented in size and detail, involving high resolution light detection and ranging (LiDAR) 
measurements of vertical and lateral movements and detailed repair records for thousands of km of 
underground pipelines with coordinates for the location of each repair. The focus of this paper was 
the Avonside area of Christchurch city where both LiDAR and air photo measurements were 
available. The seismic probability of failure curves for cast iron and asbestos cement  pipeline 
damage presented herein can be useful for risk studies of segmented water utility systems by 
providing the probability that the given facility get damage when subjected to the given hazard 
intensity from future earthquakes. 

 
Introduction 

 
Continuous service of lifeline systems such as drinking water and natural gas pipeline systems or 
getting their functionality quickly back right after an earthquake is very important and crucial for 
urban societies. It was observed in the past earthquakes that pipeline damage density was much 
higher at locations where permanent ground deformations (PGD) were observed (Toprak, 1998; 
Toprak, et al., 2009). The damage state is controlled by several parameters related to pipeline 
properties, geotechnical properties of the surrounding soil and seismic intensity. Because these 
parameters show substantial change for a pipeline system, which generally spreads over large 
areas, geographical information systems (GIS) are used for evaluations. PGD occurs as a result 
of surface faulting, liquefaction, landslides and differential settlement from consolidation of 
cohesionless soils. This paper deals with pipeline performance under PGD effects resulting from 
liquefaction. It is important for utility companies to evaluate their existing systems against PGD 
effects as well as to design their new systems resistant to these effects.  
 
Performance of pipelines in past earthquakes showed that the pipe material and joint type are 
important for the response to earthquake loading (Toprak et al., 2015b). Pipe compositions of 
pipeline systems may differ in cities and countries. The comparisons of water distribution 
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networks in various countries (e.g., Toprak et al., 2007) show that pipe compositions (including 
joint types) in the water distribution networks differ significantly from country to country. The 
history and development of water supply systems in urban areas of countries affect the existing 
pipe compositions.  For example, the main types of buried water pipes in Japan are ductile cast 
iron pipes (DIP), grey cast iron pipes (CIP), steel pipes (SP), polyethylene pipes (PE), polyvinyl 
chloride pipes (PVC), and asbestos cement pipes (ACP). Ductile cast iron pipes account for 60% 
of the total length of buried water pipes (Miyajima, 2012). The total length of Christchurch 
pipelines in liquefaction and non-liquefaction areas (about the 6.2 Mw 22 February 2011 
Christchurch earthquake) was 1730.3 km and distribution of pipes for pipe types were; 867.2 km 
AC, 194.4 km CI, 213.6 km PVC, 149.7 km MPVC and 305.4 km other types (Steel, Concrete, 
DI etc.). In liquefaction areas the length of pipes are; 405.7 km AC, 130.9 km CI, 111.9 km 
PVC, 48.9 km MPVC and 141.9 km other types. Especially, asbestos cement pipes are well 
known for their high damage rates during earthquakes. 
 
Having aging buried pipeline systems, many lifeline utility (e.g., water) companies worried about 
the performance of their systems against various hazards. Risk assessment of these systems 
provides a valuable tool for the mitigation studies. The basic equation for the risk calculation 
under extreme events is (Vrouwenvelder, 2009):  
 
RISK = ∑ P(H) P(D|H) P(S|D) C(S)                                                                                  (1) 
 
where H represents the hazard and P(H) is the probability of exceedance of a given intensity over 
a given time period, D is the damage, P(D|H) is the probability that the given facility get damage 
when subjected to the given hazard intensity, S is failure scenario, P(S|D) is the probability that 
the given system fail when subjected to the given damage and C is the cost for the given failure 
scenario. The summation is over all relevant hazards, damage types and scenarios. The 
calculated risks can be used to calculate robustness index as proposed by Baker et al. (2008).  
 
The objective of this study is to develop fragility correlations relating the probability of pipe 
failure to the different seismic ground motions, namely lateral ground strain and angular 
distortion by using ground displacement measurements from air photo and high resolution 
LiDAR surveys data acquired before and after the 6.2 Mw 22 February 2011 earthquake. In 
essence, relationships for AC and CI pipelines to determine P(D|H) for earthquake hazard is 
presented. The 22 February 2011, Christchurch New Zealand earthquake pipeline damage in 
Avonside area of Christchurch city was used to develop the relationships.  
 

Pipeline Damage Correlations 
 
Figure 1 shows coverage of liquefaction and measured LiDAR vertical displacement associated 
with pipeline distribution and repairs for 22 Feb. 2011 earthquake (O’Rourke et al. 2014). The 
total length of pipelines in liquefaction areas are; 405.7 km AC, 130.9 km CI, 111.9 km PVC, 
48.9 km MPVC and 141.9 km other types. As stated above, this study focuses on performance of 
AC and CI pipe types in the liquefaction areas. 

 
 



 
 

Figure 1: Coverage of liquefaction and measured LiDAR vertical displacement associated with 
pipeline distribution and repairs for 22 Feb. 2011 earthquake (O’Rourke et al., 2014). 

 

 
 

Figure 2: Ground displacement from LiDAR and air photos superimposed on pipelines and pipe 
repairs in Avonside (Toprak et al., 2014). 



As discussed in Toprak et al. (2014; 2015a), Figure 2 shows the water pipelines and repair 
locations in Avonside area. Also shown in the figure are air photo and LiDAR horizontal 
displacements. Measurements of lateral movement derived from the LIDAR surveys are 
provided as displacement in the east-west (EW) and north- south (NS) directions at 56-m and 4-
m intervals. The horizontal spatial accuracy of the LiDAR data is between ± 400 mm and ± 500 
mm (CERA, 2012). The data were corrected in this study for tectonic movements, which are also 
provided through CERA. The vertical movements available through CERA are corrected for 
tectonic uplift and subsidence, and provided on 5-m intervals. The accuracy of the vertical 
LiDAR data is between ± 70 mm and ± 150 mm (Tonkin and Taylor, 2012). Horizontal 
displacements from air photo measurements are provided at 680 locations. 

 
For the purpose of horizontal strain calculations from LiDAR displacements, the horizontal 
displacement data points are considered as corners of square elements shown in Figure 3 
(O’Rourke et al., 2014). The grid with square elements may be regarded as a finite element mesh 
with bilinear quadrilateral elements. Knowing the coordinates of each corner and the 
corresponding displacement, the strains in the EW and NS directions (εx and εy, respectively) and 
shear strains (γxy) can be calculated by computing the spatial derivatives of displacements using 
linear interpolation.  

 

 
 

Figure 3: Procedure of calculating ground strains from horizontal ground displacements 
(O’Rourke et al. 2014). 

 
Accordingly, finite element formulations were used to determine horizontal ground strains in the 
center of the elements, following the method described by Cook (1995). The strain matrix is 
calculated from the 56 x 56m or 4x4m cell displacements as 
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in which u1, v1, u2,...,v4 are the corner displacements defined in Fig. 3, x and y are coordinates in 
two dimensional space, and a is the length of the square cell that is 56 m or 4m. Using the strains 
from Eqn. 2, the principal strains, ε1 and ε2, were calculated from well-known strain 
transformations as 
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For the purpose of horizontal strain calculations from air photo displacements, the methodology 
described by Toprak et al. (2014) utilized as the air photo displacement data point locations are 
not evenly distributed like LiDAR ones. 
 
Pipeline damage commonly expressed as repair rate (RR), which is the number of pipeline 
repairs in an area divided by the length of the pipelines in the same area. Correlations of RR for 
different pipe types vs. lateral ground strains were developed by counting the number of repairs 
and pipeline lengths for the particular pipe type in each 56-m and 4-m cell, and then calculating 
the RR associated with certain strain intervals. Figure 4 presents RR vs. lateral ground strain 
linear data and regressions for AC water pipelines for 56-m and 4-m LiDAR and air photo 
measurements. The lateral ground strain is the maximum absolute value of the ground strain, εHP. 
The RRs were screened following procedures described by O’Rourke et al. (2014). As discussed 
in O’Rourke et al. (2014), the fidelity of the RR statistics is sensitive to the pipeline length 
sampled and number of repairs observed within a given sampling length. To select lengths 
sufficient to produce meaningful correlations, models adopted by O’Rourke et al. (2014) used 
herein. Figure 5 presents RR vs. lateral ground strain linear data and regressions for CI water 
pipelines for 56-m and 4-m LiDAR and air photo measurements. Comparison of Figures 4 and 5 
shows that asbestos cement pipelines have higher RR per level of ground strain than cast iron 
pipelines.  
 
Figures 4 and 5 also show the probabilities of failure for AC and CI pipelines in the Avonside 
area, respectively. In order to obtain the probabilities of pipe failure, number of pipelines which 
failed and did not fail should be determined. For this purpose, it is assumed that the pipe length is 
about 6 m and the total number of pipes in each strain category is calculated by dividing the 
length of pipelines by 6. The number of pipes in each strain category that failed is determined by 
assuming that each repair corresponds to one damaged pipe. This assumption is substantiated by 
checking the distances between the repairs are greater than 6 m by using GIS. The probability of 
failure is taken simply as the ratio of the number of damaged pipes to the total number of pipes 
in the same strain category zone. 
 
Angular distortion, β, is defined as the differential vertical movement between two adjacent 
LiDAR points (dv1 – dv2) divided by the horizontal distance, l, separating them, such that β = 
(dv1– dv2)/l. It is used in this work to evaluate the effects of differential vertical movement on 
pipeline damage. There are several advantages associated with this parameter. First, it is 
dimensionless, and thus can be scaled to the dimensions appropriate for future applications. 
Second, by subtracting the vertical movements of two adjacent points, one eliminates systematic 
errors associated with the LiDAR elevation surfaces. Finally, angular distortion is a parameter 
used widely and successfully in geotechnical engineering to evaluate the effects of ground 
deformation on buildings (e.g. Boscardin and Cording, 1989; Clough and O’Rourke, 1990). The 
angular distortion for each 5-m cell associated with the LiDAR measurements was calculated in 
the GIS analysis with a third order finite difference method proposed by Horn (1981).  This 



method employs a third order finite difference algorithm fitted to the 8 closest LiDAR points in 
the x (E-W) and y (N-S) directions, as described by Burrough and McDonnell (1998), to 
calculate β at each LiDAR point.  
  

 
 

Figure 4: RR and probability of failure vs. lateral ground strain relationships for AC pipes. 
 
 

 
 

Figure 5: RR and probability of failure vs. lateral ground strain relationships for CI pipes. 



 
 

 
 
Figure 6: RR and probability of failure vs. angular distortion relationships for AC and CI pipes. 
 
Correlations of RR for different pipe types vs. β were developed by counting the number of 
repairs and pipeline lengths for the particular pipe type in each 5-m cell and calculating the RR 
associated with β intervals of 1 x 10-3. The same screening technique as explained in horizontal 
strains vs pipeline damage correlations was applied to develop the regression lines and equation 
shown in Fig. 6. Figure 6 compares the regression of RR vs. β for AC and CI pipelines. The 
figure shows that AC pipelines are especially vulnerable to the differential vertical movement, 
with RR approximately 2 times higher than that for CI pipelines at comparable levels of β. This 
observation is similar to the correlations developed for all Christchurch area in O’Rourke et al. 
(2012; 2014). 
 

Conclusions 
 
In this study, the fragility relations relating the probability of buried pipeline damage and repair 
rate within the pipeline system to the seismic intensity levels and associated lateral and vertical 
ground deformations were presented. Comparisons of damage correlations obtained for lateral 
strains by using 56-m and 4-m LiDAR and air photo ground displacement measurements show 
that difference is not so significant. This result is confirmed for both AC and CI pipelines. 
Comparisons of AC and CI probabilities of failure clearly indicated that AC pipelines are more 
vulnerable to both lateral strains and angular distortions. Asbestos cement and CI pipelines are 
brittle, and thus subject to damage once a threshold level of deformation has been exceeded. This 
vulnerability is attributable in part to the uses of a relatively weak AC collar to join adjacent 
lengths of pipe. This collar is susceptible to cracking in response to relative rotation caused by 
differential settlement. CI pipelines, in contrast, have additional wall and shell thickness at the 
bell end of bell-and-spigot joints. Such joints are thus substantially more resistant to stress 
concentrations associated with relative rotation. 
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