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ABSTRACT 
 
 The mean period of ground motions has a number of applications in both geotechnical and 

structural earthquake engineering. However, the most recent model developed to predict the 
distribution of mean period is over a decade old and makes use of discrete soil classes to capture 
linear site effects. This article presents a model for the influence of both linear and nonlinear site 
effects upon the mean period that is a function of the commonly used average shear-wave velocity. 
The model is developed by inferring the underlying Fourier amplitude spectra from the NGA West 
2 models for response spectral ordinates using Inverse Random Vibration Theory and computing 
mean period values from these spectra. The developed model is valid over a broad range of 
magnitudes, distances and shear-wave velocities. 

 
Introduction 

 
The mean period, Tm, of ground motions, first introduced by Rathje et al. (1998), has a number of 
uses within both geotechnical and structural earthquake engineering. In geotechnical 
applications, the mean period has been utilized for sliding block displacement predictions 
(Saygili and Rathje, 2008), slope stability and deformation (Stewart et al. 2003; Rathje and 
Antonakos, 2011) and the assessment of liquefaction potential (Athanasopoulos-Zekkos and 
Saadi, 2012. In the context of structural earthquake engineering, Kumar et al. (2011) 
demonstrated how the mean period was a useful predictor of demands for generic single and 
multiple degree of freedom oscillators, as well as for displacements and strength demands in 
steel moment resisting frames (Kumar et al., 2013a,b). In the above applications, the mean 
period is not used in isolation as a scalar intensity measure, but is rather used in conjunction with 
a measure of the amplitude of seismic demands in a vector. The work of Rathje et al. (2013) 
outlines the concepts and implementation requirements for such vector-framework approaches. 
 
However, unlike many other commonly used intensity measures, very little attention has been 
paid to the development of predictive equations for the mean period. The notable exceptions to 
this point being the models of Rathje et al. (1998) and Rathje et al. (2004), with the latter being 
the most recent, and robust, model to have been published. 
 
The model of Rathje et al. (2004) predicts the distribution of mean period as a function of 
magnitude and distance and incorporates the influence of site effects through discrete site class 
terms. In addition to generic source, path and site terms, Rathje et al. (2004) also model the 
effects of near-source directivity. 
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When considering the many other intensity measures for which ground-motion models have been 
developed, the use of discrete site classes to represent the influence of near-surface sediments 
has almost ubiquitously given way to the use of the continuous parameter VS,30, representing the 
time-averaged shear-wave velocity over the uppermost 30 m of material at the site. In addition, 
many ground-motion models for amplitude-based intensity measures have devoted significant 
attention to incorporating the influence of nonlinear site response. 
 
Previous efforts to develop prediction equations for the mean period have made use of simple 
theoretical models for the Fourier amplitude spectrum of far-field shear waves that are described 
as a continuous function of frequency for input variables linked to the source, path and site. 
However, the representation of the site effects is not a function of VS,30 and this means that this 
numerical approach cannot be readily employed to constrain the scaling of the mean period with 
respect to this parameter. The purpose of the present article is to show how Inverse Random 
Vibration Theory (IRVT) can be used to develop a model for the effects of site response, both 
linear and nonlinear, upon the mean period of ground motions. 
 

Definition of the Mean Period 
 
Following Rathje et al. (1998) and Rathje et al. (2004), the mean period is defined in terms of the 
ordinates of the Fourier amplitude spectrum of acceleration, , at linearly-spaced frequencies, 
fi, spanning the range 0.25 fi 20 Hz and with a resolution of at least f  Hz. The 
particular expression is shown in Equation (1), from which it can be appreciated that the mean 
period is a weighted average of the period values over a pre-defined range with weights equal to 
the square of the Fourier acceleration amplitudes at these periods.  
 

   (1) 
 

Inverse Random Vibration Theory 
 
It is clear that if one wished to develop a theoretical understanding for how the mean period 
should scale with respect to common seismological parameters then it is necessary to describe 
the Fourier amplitude spectrum of acceleration A(f) in terms of these parameters. However, the 
normal theoretical representation of the observed Fourier amplitude spectrum is written in terms 
of the linear product of source, path and site effects. Although this representation is very useful 
in many situations, it is not particularly helpful when the focus is upon the site effects. The 
reason for this is that whereas the source and path terms are conveniently written as continuous 
functions of frequency, simple analytical expressions do not exist for representing the effects of 
impedance contrasts associated with near surface layers (for all but the most simple of cases). As 
a result it is common to consider the influence of kappa, for which there is a very simple 
analytical expression, but to not attempt analytical representations for the amplification effects. 
In addition, the representation of the observed Fourier spectrum as a linear product of the source, 
path and site terms does not allow one to consider the effects of nonlinear site response. 
 
In order to constrain the influence of linear and nonlinear site effects upon the scaling of the 
mean period IRVT is employed in this study. IRVT enables a consistent representation of the 



Fourier amplitude spectrum to be obtained from an acceleration response spectrum (Gasparini 
and Vanmarcke, 1976; Kottke and Rathje, 2008). Therefore, if one applies IRVT to models for 
response spectra defined in terms of the average shear-wave velocity, and that also consider 
nonlinear site response, then it becomes possible to derive consistent Fourier amplitude spectra 
that reflect this nonlinear scaling and VS,30 dependence. 
 
In this study, we apply IRVT to the recently released ground-motion models from the PEER 
NGA West 2 project (Abrahamson et al., 2014; Boore et al., 2014; Campbell and Bozorgnia, 
2014; Chiou and Youngs, 2014). A very large number of scenarios were considered spanning a 
magnitude range from 4.2-8.0 (20 values), distances from 1-200 km (53 values logarithmically 
spaced), average shear-wave velocities from 150-1500 m/s (47 values logarithmically spaced), 
and three hypocentral depths. For all of these scenarios response spectra were computed using 
the NGA West2 models and then IRVT was applied. For each of the resulting Fourier spectra an 
estimate of the mean period was obtained. An example of the inverted spectra is shown in Figure 
1 along with the resulting estimates of Tm. Note that the figure is plotted using a logarithmic 
abscissa but that the frequencies used in the Fourier transform are linearly spaced.  
 

 
 

Figure 1. Example of inverted Fourier amplitude spectra using IRVT. The spectra shown are for 
a scenario Mw 6 at RJB 10 km and a VS,30 of 760 m/s. The vertical grey lines represent the range 

considered for Tm calculations, while the coloured vertical lines show the Tm estimates. 
 

Functional Expression for Site Response 
 
Although it is relatively straightforward to anticipate the scaling of the mean period with respect 
to magnitude and distance for generic rock conditions, through consideration of theoretical 
models for the Fourier spectra (Rathje et al. 2004), there is not a similarly simple way to infer 
analytical, or even numerical, scaling for the site effects. In particular, the representation of 
nonlinear site effects within the NGA West2 ground-motion models for response spectral 
amplitudes is already relatively complicated when individual response periods are considered 



and our task here is to simultaneously represent the impact of these effects over a broad range of 
frequencies. The development of the functional form was therefore based entirely upon a 
combination of data exploration (with the ‘data’ in this case being the derived Tm values from the 
IRVT Fourier spectra – just under 150,000 scenarios for each of the considered NGA models) 
and conceptual understanding of how one should expect Tm to be impacted by both linear and 
nonlinear site response. 
 
To constrain the linear site response we isolated the scenarios for which it is reasonable (and 
conservative) to expect that nonlinear site effects would not be relevant – this corresponded to all 
scenarios from events with magnitudes less than 5 and distances greater than 80 km (the 
maximum PGA values for these scenarios span 0.0035-0.0052 g for the NGA models). The NGA 
West2 models (with the exception of Campbell and Bozorgnia, 2014) also tend to use functional 
expressions that stop scaling the spectral amplitudes with respect to shear-wave velocity once the 
velocities exceed roughly 1100 m/s. For that reason the Tm values obtained from the IRVT 
process also will not scale with velocity over this range. All of the expressions for the site effects 
for Tm are therefore defined relative to values associated with velocities above 1100 m/s.  
 
For all magnitude-distance scenarios we compute ratios of the inferred mean period values for all 
shear-wave velocity values with respect to the corresponding values for 1100 m/s. In the case 
that no effects of nonlinearity are present then these ratios should fall on top of one another for 
all considered magnitude and distance scenarios. Figure 2 demonstrates this behavior, along with 
the model predictions for linear site response that are represented by the functional expression 
shown in Equation (2). Note that the coefficient c1, as well as other coefficients for the complete 
model are shown later in Table 1. 
 

  (2) 

 

 
 

Figure 2. Ratios of mean periods for given shear-wave velocities for many magnitude-distance 
combinations. The model for linear site effects is shown by the red line. 

 



It can be appreciated from Figure 2 that the model of Equation (2) performs very well over a 
broad range of shear-wave velocities. The slight increase in the dispersion for lower velocities 
reflects three phenomena: (1) that the figure shows ratios directly rather than their logarithms; (2) 
that the ratios have been anchored to the higher velocities; and (3) that the various NGA models 
have differences in their linear site response term that are larger at lower velocities. 
 
To develop the nonlinear model all of the nearly 150,000 scenarios were considered 
simultaneously and rather than consider each NGA model individually, the ratios were 
developed using the mean of the period estimates from all of the previously reference NGA 
models, apart from Campbell and Bozorgnia (2014). We encountered some issues with obtaining 
consistent IRVT results from this particular model and as their site response terms are based 
upon the same source as the other models it was removed from the averaging.  
 
Although the linear site effects scaled essentially linearly in the log-log space of the period ratio 
and shear-wave velocity, the scenarios for which nonlinear response was playing a role deviated 
significantly from this scaling. It was observed that there was an approximately exponential 
decrease in the logarithmic period ratios with respect to VS,30 but that the amplitude of the ratios 
for low velocities increased significantly with increasing magnitude and decreasing distance. 
 
The expression adopted to model the remaining site effects is a function of the VS,30 as well as the 
magnitude of the event and the source-to-site distance. The terms involving the magnitude and 
distance are required to capture the effects of nonlinear site response and reflect the general 
scaling highlighted above. Again, it should be noted that this expression is entirely driven by the 
‘data’ and has no theoretical basis. The expression for the nonlinear scaling is shown in Equation 
(3) with the values of the coefficients c2-c6 again shown in Table 1. 
 

 (3) 
 

Table 1. Coefficients for Equations (2) and (3) – and hence Equation (4). 
 

Coefficient c1 c2 c3 c4 c5 c6 

Value -0.2258 2.3474 0.5257 -0.1318 3.6645 237.6582 
 
This function performs well in cases where the nonlinear site effects are most dominant, at 
relatively short distances for moderate to large magnitude events, but for large distances predicts 
scaling that is inconsistent with linear site response. For that reason the final prediction equation 
is the larger of the predictions from Equations (2) and (3). The final model used to define the 
scaling of Tm with respect to hard rock sites (VS,30 > 1100 m/s) is shown in Equation (4). 
 

  (4) 
 
The scaling of the data and the model predictions with respect to the shear-wave velocity are 
shown in Figure 3, for a number of distances and four separate magnitude values. Figure 4 shows 
a similar plot with respect to the Joyner-Boore distance, while Figure 5 shows the scaling with 
respect to magnitude for combinations of distance and shear-wave velocity. 



 
 

Figure 3. Scaling of the mean period ratios with respect to VS,30 for different Mw and RJB values. 
 
For the shortest distances and smallest magnitude values presented in both Figure 3 and Figure 4 
it is possible to see a degree of dispersion in the inferred Tm values. This dispersion simply 
reflects the use of multiple depth values for the considered scenarios. All ruptures are assumed to 
be vertical strike-slip ruptures and for the large earthquakes considered the depth becomes 
irrelevant as all ruptures reach the surface whereas for the smaller events there are variable 
depths. These depths influence the degree of nonlinear site response that is implied by the NGA 
West2 models and hence impacts upon the inferred Tm values.  
 
The dashed lines shown in Figure 3 and 4 represent the linear site effects predicted using 
Equation (2) and it can be appreciated that the nonlinear predictions (as well as some of the 
‘data’) dip below these levels at large distances. While this was known during the model 
development, the focus was principally associated with ensuring that the model behaved 
reasonably well for the more severe scenarios associated with large demands and nonlinear site 
response. For all of the applications mentioned in the introductory section these more demanding 
scenarios are of most interest. 
 
 



 

 
 

Figure 4. Scaling of the Tm ratios with respect to distance for a number of VS,30 and Mw values. 
 
Figure 5 shows the scaling with respect to magnitude for a number of distance values which also 
demonstrates how the scaling of the nonlinear model breaks down to some extent for the largest 
considered distance. However, it can be appreciated that the scaling is generally well-captured.  
 
Again, it should be noted that we are attempting to reflect the change of shape of the Fourier 
amplitude spectrum over a frequency range from 0.25 to 20 Hz, and hence a parameter derived 
from this spectrum, due to both linear and nonlinear site effects using just 6 coefficients. While 
there are clearly cases where our model does not predict the inferred period ratios perfectly, 
when judging the performance of the model it should be borne in mind that the NGA West2 
models for the response spectra use significantly more coefficients for each period. 
 
period. The existence of an updated model for the mean period should facilitate its consideration 
as an intensity measure within vector-based frameworks for seismic response analysis. 
 



 
 

Figure 5. Scaling of the Tm ratios with respect to magnitude for a range of VS,30 and RJB  values. 
 

Conclusions 
 
The presented model is able to capture the influence of site response upon the scaling of Tm in a robust 

manner given the relative simplicity of the model. The natural extension of the presented model is 
to embed this scaling for site response within a full predictive model for the mean 
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