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ABSTRACT

We study the generation of random fields of mechanical properties for problems where the
domain is much larger than the characteristic distance over which the properties fluctuates.
This statistical description is sufficient if we are interested in higher frequency signals or
the seismic coda. We expose three generation methods: Spectral Method, Randomization
and a variant of the Spectral Method for isotropic media. Preliminary numerical results in-
dicate that the random generation step with these methods becomes a numerical bottleneck
for geophysical problems at today’ state-of-the-art size. We address this scalability issue
by dividing the domain in independent overlapping subsets. The proposed approach has
the potential to remove that bottleneck.

1 Introduction

The Earth crust presents heterogeneities at several scales. Their modeling is necessary when
we are interested in studying the seismic coda or higher frequency signals (Aki and Chouet,
1975). Unfortunately, the complete description of the medium requires an enormous amount
of parameters. The stochastic description of those parameters may provide an interesting alter-
native. In particular, this approach is appealing when asymptotic regimes are considered, such
as homogenization (Capdeville et al., 2010) or weak scattering regime (Ryzhik et al., 1996). In
these regimes, the full description of the parameters is not mandatory since the solution of the
mechanical problem depends only on some statistics of those parameters.

The equation describing elastic wave propagation in elastic (non-dissipative) media can be ex-
pressed as:

ρ(x)
∂2v
∂t2 (x, t)−∇x {C(x) : ∇x⊗ v(x, t)}= 0, (x, t) ∈Ω×R (1)

where ρ(x) is the medium density, C(x) is the fourth-order elastic tensor, and v(x, t) is the
displacement field. The material behaviour is often considered isotropic and parameterized by
the P-wave velocity, S-wave velocity and density. However, in the Earth’s crust, the compos-
ite mineralogy and the presence of fractures of various sizes induce large fluctuations of these
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parameters. To take into account media heterogeneity, we assume C = {C(x) : x ∈ Ω} is a
stochastic random field. This description is able to generate 3D elasticity tensor fields even of
a random anisotropic material (Ta et al., 2010).

There are several methods to compute random fields with a given correlation function, ba-
sically falling into two categories: (i) direct approaches and (ii) spectral approaches. In the
former case, the generation of a realization of a random field is performed in the space domain
usually using the Cholesky factorization to determine the square root of the covariance matrix R
(Rue, 2001). The computational cost scales as O(N3) in the general case, but can be improved
to sub-O(N2) using a polynomial approximation of R1/2 (Chow and Saad, 2014). Neverthe-
less, the covariance matrix is often sparse and circulant and factorization algorithms can be
optimized for this particular case (Dietrich and Newsam, 1997). Alternatively, the random field
can be simulated using a spectral approach. The factorization is then performed on the Power
Spectral Density (Fourier transform of the covariance). One such method was introduced by
M. Shinozuka and G. Deodatis and is called Spectral Representation Method (Shinozuka and
Deodatis, 1991). Another spectral method relies on the Monte Carlo method and is called Ran-
domization Method (Cameron, 2003; Kramer et al., 2007; Kurbanmuradov et al., 2013). A
third possibility is to consider a mix of the previous two methods in discretizing the spectrum
amplitude as in the spectral representation method, and the angle as in the Monte Carlo method.
It is available only for isotropic media and is therefore called the Isotropic Spectral Method.

Seismic wave propagation problems are now routinely performed over hundreds or thousands
of cores (Komatitsch et al., 2002). It is then necessary to generate samples of the random fields
of parameters on very large scales, in particular when the correlation length is small compared
to the wave length or the propagation length. An important requirement is that the sample gen-
eration cost (CPU time and memory) should remain small compared to the simulation time.
Preliminary numerical results will show that this is not the case with the methods described
above. To mitigate scalability issues we propose to treat the problem as a set of smaller inde-
pendent problems, gluing them together through transition volumes. To generate a sample the
statistical inputs are: first order marginal density, correlation model, correlation length, average
and standard deviation. The only information communicated between the processors is the seed
for random number generation. It ensures the C ∞ regularity continuity of the generated fields
while minimizing the communications.

2 Stochastic field generation

In this paper we are interested in the case of large domains. We mean by large that the dimen-
sion of the domain L is much larger than both the correlation length `c (or some characteristic
size over which the fluctuations of the random field are significant) and the discretization step h.
If the size of the domain is small compared to the correlation length, the field can be effectively
sampled over a coarse grid (with a step size relevant for the correlation length) and then inter-
polated onto the mesh of interest. If the discretization step is much larger than the correlation
length, the sampling becomes simple and numerically inexpensive. Indeed, for the mesh con-
sidered, the random field is essentially a white noise with Gaussian first-order marginal density.
We therefore restrict our attention in this paper to the case where h < `c� L.

We only consider here the sampling of standard Gaussian fields because they are the basic
building block of a large number of numerical schemes. The first-order marginal density can be



modified locally by combining a direct and inverse Rosenblatt transforms (Rosenblatt, 1952),
although one has to pay attention to the influence on the correlation function of the resulting
random field (Grigoriu, 1998; Puig and Akian, 2004). Therefore we want to generate a random
field u that follows three assertions : (i) u is a standard gaussian field with a given correlation
function R, (ii) u is ergodic and (iii) u ∈ C p(Ω) almost surely for a given p ∈ N. In the par-
ticular case when R is only a function of y− x, u it is called a stationnary process and when it
depends only of || y− x ||, u is called an isotropic process. The ergodicity hypothesis is com-
pulsory when each generated sample should represent well the required statistics.

A common approach to sample a random field {u(x) : x ∈ Ω ⊂ Rd} with a given correlation
function R is to search it as a linear combination of independent and identically distributed
random variables, where Ω ⊂ Rd is the domain and d is the number of dimensions of space.
The spectral representation is a classic way to sample gaussian random field (Shinozuka and
Deodatis, 1991) :

u(x) =
∫

k∈Ω

R̂1/2(k)exp(ik ·x)dW (k) (x ∈Ω) (2)

where {W (k) : k ∈Ω} is a Brownian motion, R̂ is the Fourier transform of R and k ·x the inner
product between k and x. There are several methods in the literature to compute the stochastic
integral (2). In the next sections we will introduce the Spectral Method, Randomization and a
variant of the Spectral Method for isotropic media.

2.1 Spectral Method

The spectral method by M. Shinozuka and G. Deodatis (Shinozuka and Deodatis, 1991), pro-
poses the quadrature (3) :

uS.M.(x) =
N

∑
n=0

R̂1/2(kn)exp(ikn ·x)
√

∆nξ(n) (x ∈Ω) (3)

where ξ = {ξ(n) : n≤ N} is a white noise, kn ∈Ωn for all n≤ N, (Ωn)0≤n≤N is a partition of Ω

and ∆n is the Lebesgue measure of Ωn. This representation ensures the C ∞ regularity on Ω of
the random field u and decouples u(x1) and u(x2) for x1 6= x2. Nevertheless, some conditions
must be respected when using the Fourier transform in discrete spaces. Assuming Ω = [0,L]d

where L is the domain size, we define ∆x = L
M and ∆k respectively the discretization steps in

space and wave number space. To avoid the field periodicity we must compute ∆k ≤ 2π

L . It
generates a dependence between the number of points in the spectral space and the domain size
L. As a result, when generating u over a large domain or a refined mesh, computational cost
grows rapidly.

2.2 Randomization

Another classic way to compute (2) is to consider it as the expectancy of a random variable
exp(iK.x) :

∫
k∈Ω

R̂(k)exp(ik.x)dk = E[exp(iK.x)] where K follows the probability density
R̂(k). It is called the Randomization Method (Kramer et al., 2007; Kurbanmuradov et al.,
2013) :



uR.(x) =
1√
Nr

Nr

∑
n=0

ξ(n)exp(ikn ·x) (x ∈Ω) (4)

where (kn)n≤Nr is a set of Nr realisations of K. The Randomization Method does not introduce
aliasing or periodicity ; there is no condition on Nr involving ∆x or L. On the other hand sam-
pling randomly the Fourier space doesn’t guarantee that we represent accurately the spectrum
we want. It is a major drawback of this method given that we would like to rely on one single
realization to represent the properties field.

2.3 Isotropic Spectral Method

When considering isotropic fields one can reduce the complexity of Spectral Representation
method from O(N2) to O(N1+1/d) using spherical coordinates to describe the vector k. We
choose randomly the two angles θn and φn that define the direction of kn and his norm rn de-
terministically. The deterministic radius (rn)n≤Nr assures that we explore all the spectrum and
the random direction reduces the integral from a volume to a line with no further drawback.
(kn)n≤Nr is defined as :

kn = rn{cos(θn)sin(φn),sin(θn)sin(φn),cos(φn)}T (rn ∈ R+) (5)

where {θn : n≤ Nr} and {φn : n≤ Nr} are respectively white noises in [0,2π] and [0,π].

uI.S.(x) =
Nr

∑
n=0

√
R̂(rn)rn sin(φn)∆n exp(ikn ·x)ξ(n) (x ∈Ω) (6)

3 Numerical observation of scaling

Dealing with problems with many degrees of freedom is very demanding and we need to use
many cores to perform calculations. As we are looking for a sampling method suited to this
context, we perform a numerical scaling test on the presented methods. We started calculations
with a cube of volume 210 m3 on 1 processor. At each iteration we double size the volume and
use twice as much processors (weak scaling). The correlation length is lc = 1 m and the mesh
is structured with a step of ∆x = lc

10 in all three directions. The results are in Figure 1.

For each method the measured time was normalized with respect to the time taken by one
single processor. On the line graph we see that the wall time grows almost exponentially at
each iteration. It reveals that none of the presented method has a good scalability. In other
words, as the domain grows bigger the cost of generation per volume increases. It is caused by
the link between the size of the domain and the number of elements needed in the wave number
domain. For the Randomization method this link is made when we require a given accuracy
and, as we can see in Figure 1 it makes its scaling very similar to the Spectral Method.

4 Localization of the sampling

As the domain becomes larger the computational cost of generating a sample grows rapidly and
without threshold. To bound this overflowing instead of performing the whole domain at once,
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Figure 1: Weak scaling behavior for each generation method

it could be interesting to sample over several smaller subdomains. The issue here is how to en-
sure regularity between the fields generated on different subdomains. We address this problem
by making a transition overlapping volume between subdomains.

Points separated by a distance larger than the correlation length are, by definition, uncorrelated.
In the algorithms presented so far the mutual contribution of every point on the grid was consid-
ered. The idea now is to bound the number of operations needed to generate the sample based
only on the size of the field over each processor and not the global size. It allows us to keep the
number of operations per processor constant, even when L

lc
� 1. We subdivide the domain in

smaller independent parts Ωi with a partition of unity ψ = (ψi)i∈I of Ω : ∑i∈I ψi(x) = 1 for all
x ∈Ω. We write the random field as:

uLoc(x) = ∑
i∈I

√
ψi(x)uΩi(x) (x ∈Ω) (7)

where uΩi is a localized sample of uLoc over the subdomain Ωi and for i 6= j,ψi = 0 over Ω j.
With this decomposition the mean, variance an correlation function are now:

E[uLoc(x)] = E

[
∑
i∈I

√
ψi(x)uΩi(x)

]
= ∑

i∈I

√
ψi(x) E[uΩi(x)] = 0 (x ∈Ω) (8)

E[u2
Loc(x)] = E

(∑
i∈I

√
ψi(x)uΩi(x)

)2
= ∑

i∈I
ψi(x) E[u2

Ωi
(x)] = 1 (x ∈Ω) (9)

RLoc(x,y) = ∑
i∈I

∑
j∈I

√
ψi(x)

√
ψ j(y) j E

[
uΩi(x)uΩ j(y)

]
= ∑

i∈I

√
ψi(x)ψi(y) R(x,y) (x,y ∈Ω)

(10)



We can see that field variance and average remain unchanged but the correlation function has
a multiplying factor of

√
ψi(x)ψi(y) when compared to the original function. The sum of all

multiplying factors goes to one if ψi(x) = ψi(y). It means that the approximation is good as
long as the partitions of unity ψ vary slowly (in a larger scale) compared to R. This have to
be taken into account when chosing the size of the overlap volume. An example is shown in
Figure 2.

Figure 2: Generation of four independent gaussian random fields (Left), action of the decom-
position functions (Center) and resultant field after merge (Right).

An analysis of Figure 3 reveals the power of this method to mitigate scalability issues. The
parameters are the same used to make the Figure 1 (initial volume = (210) m3, lc = 1m,
∆x = lc

10 ). The transition volume is equal to 5lc.
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Figure 3: Weak scaling behavior comparison for the Spectral Representation Method

We observe that for few processors the extra cost of calculating the overlapping volumes makes
computation cost with the localization approach slightly bigger . As we go further in the num-
ber of processors we see that the cost of calculation becomes much smaller and then stabilizes.
It suggests that this method allows to calculate large domains efficiently as we can keep the
time taken by each processor constant. It should be noted that the wall time where we reach
stabilization can be diminished if we improve the algorithm. For instance Fast Fourier Trans-



form can be used to calculate the Spectral Method if we limit our interest to structured meshes.
Anyway, finding this stabilization area is a direct contribution of the localization method.

5 Simulation

First we compare the displacement-log in a simulation using first homogeneous media and
then randomly heterogeneous media. For each property the statistical inputs are: first order
marginal density, correlation model, correlation length, average and standard deviation. We
used the Spectral Method to generate samples in a cube of side 500m and correlation length
40m. The source excitation is along the Y-axis. We take the displacement field along a line that
passes through the source aligned with the X-axis. The statistical properties are in Table 1 and
displacement log in both cases is shown in Figure 4.

Table 1: Statistical parameters used in simulation.

Density Lambda Mu
Average 2800 kg

m3 1092.7 105 1120.0 105

Variance 6 105 1 1016 1 1016

First Order Marginal Lognormal
Correlation Size 40m
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Figure 4: Displacement log in three points: in the source (left), 200m from the source (cen-
ter), 400m from the source (right). In each log the homogeneous case is on top and random
heterogeneous at the bottom

We can see that in the homogeneous case the displacement field remains unchanged. On the
other hand in the heterogeneous case the displacement field changes a lot with the distance
from the source. As expected wave scattering generates displacement in axis other than Y.

In the second simulation our domain is the Greek island of Argostoli. We generated with the
Isotropic Spectral Method samples to create a 3D elasticity tensor fields of a random isotropic
material. We can see one realization of a density field on Figure 5. The problem was performed
in a 8,2 millions points unstructured mesh. The correlation length, lc, is 1km and the domain
size is 100km ×80km ×15km.



Figure 5: Random density field generated with the isotropic spectral method.

Using the density tensor of Figure 5 and similarly fluctuating properties of the P-wave and
S-wave velocities, we performed a wave propagation simulation in a spectral element code.
Results are shown in Figure 6 The generation of the properties took about 2% of the total
calculation time.

Figure 6: Three snapshots of wave propagation simulation in the Greek island Argostoli.

6 Conclusion

When generating random fields in domains where the correlation length is small compared to
the wave length or the propagation length the sampling step can become a bottleneck. We
showed three sampling approaches in the spectral domain and conclude that the existing meth-
ods do not present a good scalability. We addressed this scalability issue by localizing the
sample. The localization of the sample allows to generate several independent random fields
and combine them in a continuous field. Results and theory have shown that a transition volume
of 5 to 10 lc is enough to make statistics homogeneous over the whole domain. Note that we are
interested in cases where L is hundreds to thousands times lc, thus the cost of calculating the
overlapping volumes is very little compared to the whole generation. Although, the numerical
tests have to be pushed further, there seems to be a possibility to remove the scientific issue of
large scale simulation of random fields.
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