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ABSTRACT 
 
 Common geotechnical earthquake engineering design approaches utilize acceleration levels to 

evaluate slope failure triggering and resulting permanent displacements, using pseudo-static 
stability analyses together with the Newmark method. These approaches assume a single sliding 
mechanism and do not take into account the possibility of multiple (increased in size) mechanisms 
due to higher accelerations than the critical one. This paper presents a “quasi dynamic” analysis 
framework which allows evaluation of the effect of higher acceleration (beyond the critical one) 
on the mechanism and the volume of the slide. The approach combines concepts from pseudo-
static analysis together with plastic flow, such that the developed mechanisms are restricted from 
transferring greater stresses than their yield value (and by that preventing factor of safety lower 
than 1.0). The approach is applied to slopes characterized by ideal elasto-plastic material to 
demonstrate that in certain conditions an increase in the acceleration level, by itself, may alter the 
failure mechanism.  

 
Introduction 

 
The pseudo-static analysis is one of the most commonly used techniques for evaluation of the 
seismic risk of manmade and natural slopes. It may be used as part of factor safety (FS) 
evaluation under the input of a given acceleration (e.g. Seed, 1979), or for determination of the 
slope yield acceleration (e.g, Sarma and Bhave, 1974; Sarma 1975; Baker et al. 2006). The latter 
may be combined with Newmark (1965) analysis for determination of an earthquake induced 
permanent displacement (e.g. Makadisi and Seed, 1978). The approach assumes that once a 
mechanism develops, its size and shape remain constant, and the failing slope accelerates with 
the relative acceleration of a(t)-ay (e.g. Newmark, 1965), where ay is the yield acceleration (i.e. 
the acceleration that leads to a factor of safety of 1.0 in a pseudo-static analysis).  
 
Pseudo-static analyses, by their nature, cannot deal with “beyond critical accelerations” (i.e. 
accelerations higher than those which lead to sliding), as this will only produce a factor of safety 
smaller than 1.0 and will not reveal information regarding the influence on the mechanism. In 
fact, sliding mechanisms resulting from pseudo-static analyses with FS<1 are meaningless, as 
they are associated with artificial, unrealistic, strength properties greater than the real ones 
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(φmob>φ, and cmob>c). The Newmark (1965) assumption that the slope accelerates by a(t)-ay  is 
correct only if the failure mechanism does not change and the kinematics allows deformation in 
the direction of the applied acceleration a(t)-ay. This assumption, however, may not always hold. 
In order to capture the possible impact of greater acceleration on the developed mechanism and 
displacements, the current paper suggests a “quasi-dynamic” analysis framework which can deal 
with beyond critical acceleration levels.  

 
The paper is composed of 3 main sections. Firstly the concept of “quasi-dynamic” analysis is 
presented. Secondly, numerical implementation and an example are provided. Finally, discussion 
and conclusions are presented. 
 

The “Quasi-Dynamic” Analysis Framework  
 
The Achilles’ heel of the pseudo-static analysis is that it cannot limit the mobilized stresses to 
their yield value. Consequently, analyses with beyond critical accelerations results in mobilized 
stresses higher than the yield value (hence the FS=τy/τmob<1). In order to examine the slope 
behavior under accelerations higher than the critical value, one must allow the unbalanced 
stresses (or loads) to be translated into motion (i.e. acceleration). Let us further discuss this 
concept using a simple condition of a failure along a predefined, fixed, planar slip surface. Figure 
1a shows a given slope subjected to a horizontal acceleration and its free body diagram. Note 
that due to introduction of kinematics into the current analysis, the dilation angle, ψ, is of 
importance (unlike conventional pseudo-static limit equilibrium analysis). Figure 1b shows the 
force polygon associate with the limit state (i.e. FS=1), from which the critical (or yield) 
acceleration, ky (=ay/g), may be defined. Note that the contribution of cohesion is equivalent to 
an inclined reduced weight at an angle of δ  = arccot[W/(cLcosα)-tanα]. Solution of the force 
polygon shown in Figure 1b, results in a critical acceleration coefficient, ky, of: 

 

)cos(
)sin(

)cos(
cos

φα
αδφ

δα
α

−
−+

−
=yk  (1) 

 
where, α is the inclination of the slip surface, φ is the soil friction angle, and δ angle capturing 
the effect of cohesion as described earlier. When c = 0 (or δ  = 0), kRyR degenerates into the well-
known solution of a sliding frictional block (with friction φ) over an inclined slope of α, kRyR = 
tan(φ - α) (e.g. Kramer, 1996).  Once acceleration values are higher than kRyR,R Ra D’Alembert’s 
force must be introduced into the force polygon in order to consider “static equilibrium” as 
shown in Figure 1c. Note that the total acceleration body force, kW, is explicitly divided into the 
yield component, kRyRW, and the post yield component,  (k-kRyR)W, to emphasize the contribution of 
the beyond critical acceleration component. As can be seen, the normal force and frictional 
forces depend on the acceleration value, and do not remain constant as acceleration increases 
beyond critical value. The unbalanced force, or the D’Alembert’s force, shown as ma (mass 
times the acceleration), is directed opposite to the movement direction, and is influenced by the 
dilation angle, ψ. Only when k = kRyR the dilation angle does not affect the result, as the force 
polygon degenerates into that of Figure 1b. An expression for the failed mass acceleration may 
be obtained from the force polygon (introducing m=W/g): 
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Note that the failed mass accelerates at a value different than (k-ky)g (the value suggested by 
Newmark, 1965), and in fact depends on the dilation angle besides the relative acceleration and 
sliding directions. For the case of horizontal acceleration input, as discussed here, the mass will 
accelerate by (k-ky)g only if α and ψ  are equal to zero.  
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Figure 1. Simplified cases: a. Slope and slip surface; b. Force polygon of limit state of critical 

acceleration; c. Force polygon for beyond-critical acceleration.  
 

While the above, simplified, case is rather limited, it reveals an interesting point that the 
unbalanced force (ma) is affected by both the volume of the slide and the direction of sliding 
(associated with the kinematics of yielding). It is therefore postulated that if a “quasi-dynamic” 
process is considered, in which the acceleration value slowly increases to keep the problem 
“static” and prevent development of stresses greater than their yield values and stress waves, 
relations between the unbalanced force (or D’Alembert’s force), failure volume, and critical 
acceleration values could be established. In a sense, any dynamic simulator in which the process 
of acceleration increase is performed in sufficiently small steps (i.e. slowly) to prevent stress 
waves while allowing plastic deformation, should allow determination of the quasi-dynamic 
unbalanced forced (i.e. ma in Equation 2). Such analysis may allow insight into the beyond 
critical acceleration response.   
 
To illustrate the outcome of such a quasi-dynamic process, let us consider a multiple level slope 
as presented within Figure 2. The domain is subjected to a uniform horizontal acceleration equal 
to k·g. In a “quasi-dynamic” problem, the integrated unbalanced force (IUBF) may be calculated 
as follows:  
 

∫ +=
V

yx dVuu 22IUBF ρ  (3) 

where ρ is the density, xu and yu are the horizontal and vertical acceleration, and V is the volume 
of the whole domain (including stable areas).  
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Figure 2. Idealized response of integrated unbalanced force versus applied acceleration. 

 
Figure 2 illustrates how, in principle, the IUBF should be developed with slow increase of 
accelerations. When k is smaller than the classical critical acceleration, ky1, no failure occurs and 
the value of IUBF is zero. Once the classical critical acceleration is achieved, sliding begins. As 
demonstrated by equation 2, for a given mechanism the increase of the IUBF should be 
proportional to (k-ky). Consequently, a linear increase of the IUBF with k is expected. Once the 
sliding mechanism changes, the relationship between IUBF and k should also change, leading to 
a change in the slope of the IUBF-k line. 
 
Using Equation 2 to establish the unbalanced force, and differentiating it with respect to k, 
results in:  
    

)cos(
)cos(IUBF

ψφ
αφγ

−
−

=
∂

∂
fV

k
 (4) 

 
where Vf  is the volume of the sliding body, and γ  is the unit weight of the soil. This expression 
infers that any change in the IUBF-k slope indicates a change in sliding volume and mechanism. 
However, in order to establish the volume of the sliding mass, one must estimate the value of 
α in addition to the IUBF-k slope, assumed to be the average slip surface inclination (as in 
Taylor (1937) friction-circle method). It is suggested that α  be determined as θIUBF+ψ, where 
θIUBF is the direction of the global unbalanced force: 
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The following section details how the “quasi-dynamic” process may be achieved using finite 
difference analysis.   

 
Numerical Implementation and Example 

 
The numerical implementation of the described “quasi-dynamic” process was achieved using the 
equilibrium solver of the finite difference code FLAC (Itasca, 2013). FLAC solves the equations 
of motion together with artificial mass and high damping, applied only when changes in velocity 



direction occur (to damp dynamic waves while allowing continuous plastic flow). 
Conventionally, equilibrium is declared, within FLAC, when the maximum unbalanced force 
diminishes to a small portion of the applied gravitational force. This way static and plastic flow 
problem can be solved using the equations of motions. The current implementation utilizes a 
very similar process, in which, except for gravitational loads, the complete domain is subjected 
to a horizontal body force of ρ·k·g. The value of the integrated unbalanced force (Equation 3) is 
continuously monitored. A solution is declared once the IUBF reaches a constant value over time 
(steps). This infers that all dynamic waves have been dissipated and the domain is either stable 
(if the IUBF is nearly zero) or reached a state of constant acceleration (the “quasi-dynamic” 
condition). The process begins with a low value of k, which slowly increases in small 
increments. In each increment the development of a constant IUBF is awaited before proceeding 
to the next increment. The evaluation process is performed within a framework of small strains 
without any coordinates update (such that the slope remains in place as a boundary value 
problem).  

 
Figure 3 shows the finite difference model of an infinite multi-leveled natural slope. Periodic 
boundaries were used, together with a simulation process of top-down erosion to generate also 
periodic initial stress condition. The average (infinite slope) inclination is 6.3 degree while the 
maximum is 30 degree. The maximal height difference between toe and crest is 10 meter. Figure 
4 shows the results of the IUBF versus the applied acceleration coefficient, k, for a case in which 
the ρ = 1.8·103kg/m3, φ = 30 degree, c = 5 kPa and ψ = 0 degree and the analysis is performed 
with an elastic perfectly plastic constitutive model answering a yield function of Mohr-Coulomb. 
The elastic parameters were shear modulus of 30 MPa and bulk modulus of 65 MPa.  
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Figure 3. Boundary value problem and finite difference grid. 
 

As can be seen, first yielding occurs at horizontal acceleration of roughly 0.2g, and is associated 
with individual local slope failure (as illustrated in Figures 2 and 5a). At acceleration of 
approximately 0.33g the mechanism changes to a global two-slope failure (as illustrated in 
Figures 2 and 5b). Once the acceleration reaches a value of 0.38g a global, infinite, slope failure 
occurs (as illustrated in Figures 2 and 5c). Note that conventional infinite slope stability 
evaluation based on Mohr-Coulomb yield failure (τf =σ·tanφ+c) results in: 
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where z is the depth for which the infinite planar slip surface is located. For the current case, in 
which z = 30 meter, this expression yields ky of 0.44, which is greater than the obtained value 
from the numerical simulation (0.38). The reason is shear band formation and post-peak failure 



(e.g. Vermeer, 1990). That is, even in elastic perfectly plastic constitutive model, strain softening 
may occur when the dilation angle is smaller than the internal friction angle. As shown by 
Vermeer (1990), for plane strain simple shear condition the ratio between the shear stress and 
normal stress at post-peak residual yielding is: 
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Introducing φ* into Equation 5 instead of φ, results in a ky of 0.378 - a practically identical value 
to that obtained from the numerical results. When the analysis is performed with ψ  = φ (and 
consequently φ* = φ) the infinite slope failure occurs at the conventional value of Equation 5. 
Note that this phenomenon of strain softening along shear bands is not limited to this specific 
problem. However, the fact that in the current problem shear strains are accumulated leads to this 
condition.    
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Figure 4. Simulation results for the slope shown in Figure 3 with ρ = 1.8·103kg/m3, φ = 30 

degree, c = 5 kPa and ψ = 0 degree. 
 
Table 1 shows a comparison between the slide volumes evaluated by the slope of the curve in 
Figure 4 together with Equation 4 and α = θIUBF + ψ against the volume of sliding based on 
numerical measurements of sliding elements in FLAC. That is, the value of Vf denoted by FLAC 
in the table was obtained by summing the area of all zones having a velocity greater than 0.1 the 
maximal velocity. While this may not be the most accurate method, it still provides a rough 
estimate of the sliding areas, since difference in velocity between stable and failing zone is 
abrupt (most of the velocity change occurs over a thin shear band – roughly one element). 
Mechanism 1 2 and 3 are associated with the 3 slopes observed in Figure 4. Figure 5 shows the 
associated volume in FLAC based on the 0.1 maximum velocity criterion. Note that since α  was 
defined based on the direction of the IUBF, for the infinite slope it results in a slightly greater 
value than the slope itself (= 6.3 degree). As can be seen from the comparison, the procedure 
suggested in this paper appears to give a reasonable and consistent evaluation of the volume of 
slides, based only on the value of the unbalanced force and its direction. It should be noted that 
the force polygon presented in Figure 1c and the corresponding equation (4) (together with 
α = θIUBF + ψ) for sliding volume determination are associated with an ideal case of a single 
slide over a planar surface. It is therefore most suitable for the first local slides, and its use for 
volume determination of multiple slides can only be considered a rough approximation. This is 
because the kinematics of lower slip surfaces will affect the direction of the motion of upper slip 
surfaces and their corresponding unbalanced force. In fact, once Mechanism 2 develops, the 



lower and upper 10 m slopes (previously identical) behave differently (considering a rotational 
global behavior of the lower slip-surface). This effect can also be seen in the comparison table. 
The agreement for Mechanism 1 appears to be very good (0.1% difference), since at this point 
only local slides occur. Once the mechanism is extended to include a deeper slip surface, the 
agreement worsens (5% difference). When global, infinite, mechanism develops, the agreement 
becomes good again. This is because the overall contribution of the large slide overshadows the 
effect of the small slides.     
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Figure 5. Sliding volumes based on 0.1 maximum velocity criterion. Mechanisms developed at 
accelerations (a) k=0.25 (b) k=0.37 (c) k=0.42. 

 
Table 1. Comparison of sliding mass volume. 

 

 Mechanism 1 Mechanism 2 Mechanism 3 

α [deg] = θIUBF + ψ 23.3 15.6 6.7 

]/[ 3 mmVf  
FLAC 153.4 828.3 5225 

Equation 4 153.2 871.0 5263.9 

Difference [%] 0.1 4.9 0.7 
 

Conclusions 
 
Geotechnical earthquake engineering design approaches frequently utilize the acceleration levels 
to evaluate slope failure triggering and resulting permanent displacements, using pseudo-static 
stability analyses together with Newmark method. These approaches involve an implicit 
assumption of a single sliding mechanism of a constant volume, and do not take into account the 
possibility of multiple, increased in size, mechanisms due to higher acceleration than the critical 
one. That is, evaluation of the slope under higher acceleration than the critical one only results in 
a factor of safety smaller than 1.0 and cannot capture the possible impact of greater accelerations 
on the developed mechanism and displacements.  
 
The paper presents an analysis framework which allows evaluation of the effect of higher 
accelerations (beyond the critical one) on the mechanism and the volume of the slide. The 
approach combines concepts from pseudo-static analysis together with plastic flow, such that the 
developed mechanisms are restricted from transferring greater stresses than their yield values 



(and by that preventing factor of safety lower than 1.0). The approach may be said to be “quasi 
dynamic” in which the failing mass continues to accelerate under the unbalanced forces (beyond 
the critical one), while the remaining stable body is static, until an additional, new, mechanism 
develops. In the paper, the approach is applied to slopes characterized by ideal elasto-plastic 
material to demonstrate that in certain conditions an increase in the acceleration level, by itself, 
may alter the slope failure mechanism. It is demonstrated that changes in failure mechanism 
occur at distinct acceleration levels (the first of which is the classical pseudo-static value), and 
the volume of the sliding mass correlates with the integrated unbalanced force.  
 
The effect of mechanism alteration due to increase in acceleration may be more relevant to 
natural slopes, in which individual local modes of failure may unite into a larger global failure 
mode, but not necessarily to manmade embankments in which a change of mechanism requires 
drastically high accelerations. 

 
The fact that distinct acceleration levels separate between small and large sliding volumes may 
potentially be used for geological and geographical statistical evaluation of seismic history based 
on landslides scars, such that an area characterized by a diversity of landslide volumes may be 
said to be exposed to greater accelerations (leading to the second or third mechanism) while an 
area with only local failure to much smaller accelerations. 

 
Note that landslide volumes may well depend on other parameters except for acceleration levels 
alone. For example if the material is sensitive, with significant strain softening, earthquake 
magnitude may govern the behavior (as the strain accumulation and loading cycles increase with 
magnitude). Such effects may potentially be incorporated into the suggested framework through 
equivalent cyclic based degradation parameters. This, however, requires further study.      
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