Haematological management of cyanotic congenital heart disease (CCHD).

Lou Hofmeyr
ACHD Cardiologist
Panorama MediClinic, Cape Town, South Africa

No disclosures
Outcomes have improved due to better diagnostics and better treatment.
Hematological management of cyanotic congenital heart disease

Which patients are we dealing with?

AortoPulmonary connections:
- PDA
- Central shunt
- MAPCAs

Shunt with normal or restricted pulmonary flow:
- Tetralogy of Fallot
- DORV/Taussig Bing anomaly
- Pulmonary atresia VSD MAPCAS
- Ebstein’s anomaly with ASD
- Univentricular heart with pulmonary outflow tract restriction

Pulmonary vascular disease due to a non restrictive shunt:
- Large non restrictive VSD
- Atrial shunt/ASD
- Univentricular heart without pulmonary outflow tract restriction
- Truncus arteriosus

5yr mortality of 12.6%. Highest of all ACHD patients

Oechslin E. Heart 2015;101:485–494. doi:10.1136/heartjnl-2012-301685

Management of adults with cyanotic congenital heart disease
Hematological management of cyanotic congenital heart disease: objectives of discussion:

The Good: Physiology

The Bad Complications & The Ugly Uncertainties

1) RBC Erythrocytosis: Inverse relation with platelets
 Hyperuricaemia
 Viscosity
 Phlebotomy
 Iron deficiency

2) Risk of bleeding - contributes to iron deficiency
3) Risk of thrombosis - wisdom of anticoagulation
4) Decreased immunity - contributors
 - risk of cerebral access related to hyperviscosity
 - risk of infective endocarditis
5) Vascular bed dysfunction / Atherosclerosis
The Good Management Steps and Therapies

1) Risk reduction:
- Avoid destabilization of the equilibrium
- Treatment if iron deficiency
- Avoidance of dehydration
- Avoidance of paradoxical embolism
- Precise decisions on anticoagulation

2) Therapy:
- Hyperviscosity
- Cerebrovascular complications
- Thrombosis
- Haemoptysis
- Gout
Hematological management of cyanotic congenital heart disease: The Good Adaptations

- Despite severe hypoxaemia, adverse cardiac hemodynamics, pulmonary hypertension & poor exercise tolerance, patients have good Q of L & reasonable prognosis.
- CCHD patients have beneficial physiological adaptations of cardiac & skeletal muscle.
- Chronic cyanosis leads to increase EPO production & an isolated rise in RBC count enhancing oxygen delivery.
- 2,3 DPG curve rightward shift enhances oxygenation.
- Cardiac output increases.
- Compensated erythrocytosis leads to new equilibrium. Appropriate EPO levels in response to hypoxia.
- Iron metabolism is preserved & hyperviscosity symptoms are absent.
Inverse relationship between platelet count & haematocrit!
In CCHD, the pulmonary circulation are bypassed by Right to Left shunt. Platelet production is dependent on fragmentation of megakaryocytes in lung vessels. Platelets

- Large shunt = fewer platelets + bad prognosis.
- Additional theories suggest decreased megakaryocytic production, increased platelet destruction and increased platelet activation contribute to low platelet counts.
- Thrombocytopenia seems independent of hemoglobin and iron levels.
Hematological management of cyanotic congenital heart disease: The Bad Effects on RBCs, Platelet function.

- **Decompensated erythrocytosis** leads to persistent EPO secretion, iron depletion & eventual iron deficiency anemia.
- Iron deficient red cells are microcytic and less deformable, leading to hyperviscosity.
- **Hyperuricaemia** occurs due to RBC breakdown & renal breakdown.
- Gout seldom clinically problem.
- Thrombosis & infarction are devastating complications of decompensated erythrocytosis.
- Cerebral blood flow is inversely related to hematocrit & viscosity.
- AF, hypertension & microcytosis are the perfect storm leading to CVA in adults with CCHD.

Decompensated erythrocytosis leads to persistent EPO secretion, iron depletion & eventual iron deficiency anemia. Iron deficient red cells are microcytic and less deformable, leading to hyperviscosity. Hyperuricaemia occurs due to RBC breakdown & renal breakdown. Gout seldom clinically problem. Thrombosis & infarction are devastating complications of decompensated erythrocytosis. Cerebral blood flow is inversely related to hematocrit & viscosity. AF, hypertension & microcytosis are the perfect storm leading to CVA in adults with CCHD.
Interplay of thrombocytopenia, shortened platelet survival, Von Willebrand factor deficiency & clotting factor deficiencies increases risk of bleeding.

- Bleeding contributes to iron deficiency.
- Despite low platelet counts the function of platelets seem preserved.
- Fibrinogen dysfunction inhibits normal clot formation.
- Chronic low grade DIC picture may contribute.
Reduced Vit K dependent coagulation factors are likely the result of poor cardiac output, hypoxia, & hepatic congestion.

Accelerated fibrinolysis adds to risk of bleeding.

Thrombotic events frequent. Thrombus in PA in up to 30% of Eisenmenger patients.

Hemoptysis is frequent & can be deadly.

Bleeding events are the most common cause of “non cardiac” death in CCHD.

Bleeding events seem to occur at approx 2.6% per patient yr. Mostly hemoptysis, mostly minor.

Hematological management of cyanotic congenital heart disease: The Bad Effects on Bleeding/Coagulation balance.
Hematological management of cyanotic congenital heart disease: The Bad Effects on Bleeding/Coagulation balance.

- No clear relation between bleeding or thrombosis and platelet count.
- CCHD patient have a point of balance between thrombogenicity and bleeding liability.
- Raised fibrinogen & raised factor VIII/ VonWillebrand factor complex due to chronic disease. Also raised PF4, P selectin and E selectin. This leads to platelet and endothelial activation.
- These increases compensate for the bleeding risk of low platelet numbers, and may lead to thrombogenicity.
- Thrombosis relatively common....perhaps 1% risk per patient yr.
- Despite risk of paradoxical stroke, PE’s and CVA uncommon at 0.06% and 0.12% per patient yr.
Hematological management of cyanotic congenital heart disease: The Ugly: Is it better to anticoagulate?

- Anti-coagulation strategies in patients with idiopathic PAH are proven.
- This can not be extrapolated to Eisenmenger patients.
- Eisenmenger patients do worse when anti-coagulated!
- No survival benefit, 16% risk of severe bleeding.
- Anecdotal best practice is to anticoagulate Eisenmenger patients only if thromboembolism is proven, or other clear indications such as valve prosthesis are present.

Does anticoagulation in Eisenmenger syndrome impact long-term survival?
Hematological management of cyanotic congenital heart disease: The Ugly: Is it better to anticoagulate?

- Anti coagulation strategies in patients after Fontan operation is a vastly different story!
- Guidelines not so clear!
- My feeling is to anticoagulant the Fontan patient with arrhythmia, end organ damage or proven thrombosis.
- Always consider anticoagulation benefit vs risk at each follow up.

Cyanotic congenital heart disease and atherosclerosis.
Tarp JB, Jensen AS, Engstroem T, Holstein-Rathilou NH, Søndergaard L.

Chronic cyanosis and vascular function: implications for patients with cyanotic congenital heart disease.
Cordina RL, Celermajer DS.

- High bilirubin, low iron, and low platelets lead to lower cholesterol levels and thus lower atherosclerosis risk.

- Potential target for medication.
Hematological management of cyanotic congenital heart disease: The Ugly Complications and Uncertainties.

Immunosuppression

- CCHD patient certainly have risk of infective endocarditis and brain abcess.
- Do survivors of Fontan Procedure have immune deficiency?
- Surgical thymectomy, thoracic duct manipulation & PLE contribute to low absolute lymphocyte counts.
- T-cell lymphopenia with low CD4+ and CD8+ counts & hypogammaglobulinaemia is demonstrated.
- Clinical effect is delayed clearance of cutaneous viral infections.
- Systemic opportunistic infections were not seen despite lab abnormalities.
- Theory is that lymphatic recirculation is defective, but T cell function is preserved at tissue level.

Risk Factors and Clinical Significance of Lymphopenia in Survivors of the Fontan Procedure for Single-Ventricle Congenital Cardiac Disease.
Morsheimer MM, Rychik J, Forbes L, Dodds K, Goldberg DJ, Sullivan K, Heimall JR.
Hematological management of cyanotic congenital heart disease: The Good Treatments for Hyperviscosity.

- Phlebotomy is exclusively used for hyperviscosity symptoms or pre operative autologous blood donation.

- Always rehydrate patients well.

- Consider cerebral access with appropriate imaging.

- No specific target hematocrit.
Hematological management of cyanotic congenital heart disease: The Good Treatments for Hyperuricaemia & Gout.

- Is it really gout? HPOA vs Periostitis vs Gout.
- Colchicine
- Allopurinol
- Rasburicase
Hematological management of cyanotic congenital heart disease: The Good Treatments for Iron Deficiency

- Iron supplementation is recommended especially for those with an inappropriately low Hb for severity of hypoxia.
- Perhaps as much as 45% of patients are iron deficient.
- Increased erythropoiesis, phlebotomy & bleeding contribute to iron deficiency.
- Age, kidney impairment, growth requirements & menorrhagia worsen iron loss.
- Iron replacement makes as much difference in 6MW test as Bosentan treatment. (BREATHE-5)
- No real data on type or duration of iron supplementation treatment
- Benefit of iron supplementation is more than risk.
Hematological management of cyanotic congenital heart disease:
Take home message

- Hematological system contributes to adaptations and complications in CCHD.
- Challenges include are erythrocytosis, iron deficiency, anemia, hyperviscocity, hemorrhage, thrombosis and hyperuricaemia.
- Risk reduction and prevention strategies avoid destabilization of the equilibrium.
- ACHD clinic systems are imperative!
The Good: “There are two kinds of people in the world: those with guns and those that dig. You dig?”

The Good: “There are two kinds of people in the world: those with hematological complications of cyanotic congenital heart disease, and those who complain. You complain?”